Honors Geometry

9.

Tell whether each statement is true Always (A), Sometimes (S), or Never (N).

- b. The supplement of one of the $\angle s$ of a \triangle is equal in measure to the sum of the other two $\angle s$ of the \triangle .
- c. A \triangle contains two obtuse \angle s.
- d. If one of the $\[these scales \Delta$ is 60°, the $\[these scales \Delta$ is equilateral.
- e. If the sides of one Δ are doubled to form another Δ , each $_{\perp}$ of the second Δ is twice as large as the corresponding $_{\perp}$ of the first Δ

11. Find $m_{\perp}MRP$, $m_{\perp}ORP$, and $m_{\perp}MOR$.

15.

The measures of the two \angle s of a \triangle are in the ratio of 2:3. If the third \angle is 4° larger than the larger of the other two \angle s, find the measure of an exterior angle at the third vertex.

16.

CD bisects ∠ACB

 \overrightarrow{BD} is one of the trisectors of $\angle ABC$.

17.

- Given: EFGH is a rectangle FH = 20 J, K, M, and O are midpoints.
 - a. Find the perimeter of JKMO.
 - b. What is the most descriptive name for JKMO?

Honors Geometry

19.

Prove that the midpoint of the hypotenuse of a right Δ is equidistant from all three vertices.

Given:

Prove:

Statements	Reasons

Honors Geometry

20.

Prove that if the midpoints of a quadrilateral are joined in order, the figure formed is a \square .

Given:

Prove:

21.

Given: $\overline{AB} \cong \overline{AC}$ $\overline{AE} \cong \overline{DE} \cong \overline{DB} \cong \overline{BC}$

